Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 48(1)(2016) pp. 99-109

A Study of Anti-Commutativity in AG-Groupoids

Imtiaz Ahmad
Department of Mathematics, University of Malakand, Pakistan, Email: iahmaad@hotmail.com
Iftikhar Ahmad
Department of Mathematics, University of Malakand, Pakistan,
Email: iftikhar298@yahoo.com
Muhammad Rashad
Department of Mathematics, University of Malakand, Pakistan, Email: rashad@uom.edu.pk

Received: 19 October, 2015 / Accepted: 14 March, 2016 / Published online: 21 March, 2016

Abstract

A magma that also satisfies the left invertive law, $(a b) c=(c b) a$ is called an AG-groupoid. Generally, an AG-groupoid is a non-associative structure lying midway between a groupoid and a commutative semigroup. We consider the notion of anticommutativity in AG-groupoids and investigate some of their properties. A new subclass of AG-groupoids as rectangular AG-groupoid is introduced and investigated. A variety of examples and counter examples are produced using the latest computational techniques of GAP, Mace4 and Prover9.

AMS (MOS) Subject Classification Codes: 20N05, 20N02, 20N99
Key Words: Anti-commutative, AG-groupoid, unipotent, right-Bol.

1. Introduction and Preliminaries

An AG-groupoid S is the most interesting non-associative algebraic structure in which the left invertive law, $(a b) c=(c b) a$ holds. It lies midway between a groupoid and a commutative semigroup. Some new subclasses of AG-groupoids have been discovered recently in [1, 9] and interesting future work has been mentioned in these subclasses. Anti-commutative AG-groupoid is one of these newly discovered subclasses of AG-groupoids. An AG-groupoid S in which the identity $a b=b a \Rightarrow$ $a=b$ holds for all $a, b \in S[9]$ is called anti-commutative AG-groupoid. In this
paper, we will investigate anti-commutativity in AG-groupoids. We will also find some relationships between anti-commutative AG-groupoids and other subclasses of AG-groupoids such as quasi-cancellative, right distributive and left distributive AG-groupoids. Throughout this article, S will represent an AG-groupoid otherwise stated else. S is called right quasi-cancellative if the condition, $x^{2}=x y \& y^{2}=$ $y x$ implies $x=y \forall x, y \in S$ holds. Similarly, S is said to be a left quasi-cancellative if it satisfies the condition $x^{2}=y x \& y^{2}=x y$ implies $x=y$ for all $x, y \in S . S$ is said to be quasi-cancellative if it is both right and left quasi-cancellative [10. We will use the notation "." to avoid the frequent use of parenthesis in our calculations while proving results, e.g. $(a b \cdot c) d$ will be the same as $((a b) c) d$.
AG-groupoid is a well worked area of research, various articles are recently published on different concepts in the last few years. Modulo matrix AG-groupoids are recently constructed in [2, 3]. The concept of ideals and LA-rings in theory of AG-groupoids is introduced by Q. Mushtaq [6, 7]. Fuzzification of various concepts in AG-groupoids has also been done by various researchers recently. AG-groupoids have a variety of applications in flocks theory, finite mathematics, geometry and other algebras. In this article, we define a new subclass of AG-groupoids as a rectangular AG-groupoid. The existence of this AG-groupoid is proved by various non associative examples. In the following we give a table of definitions that arise in various papers like, $[1,8,9]$ and is used in the rest of this article.

AG-groupoid	Defining identity	AG-groupoid	Defining identity
AG** $^{* *}$	$a(b c)=b(a c)$	unipotent	$a^{2}=b^{2}$
T^{1}	$a b=c d \Rightarrow b a=d c$	AG-3-band	$(a a) a=a$
T^{2}	$a b=c d \Rightarrow a c=b d$	right distributive	$(a b) c=(a c)(b c)$
T_{l}^{3}	$a b=a c \Rightarrow b a=c a$	left distributive	$a(b c)=(a b)(a c)$
T_{r}^{3}	$b a=c a \Rightarrow a b=a c$	paramedial	$a b \cdot c d=d b \cdot c a$
T^{3}	both T_{l}^{3} and T_{r}^{3}	Jordan	$a(b b . c)=b b \cdot a c$
right-Bol	$a(b c \cdot b)=(a b \cdot c) b$	medial	$a b \cdot c d=a c \cdot b d$

Table 1. AG-groupoids with their identities

1.1. Relation between anti-commutative- and T^{1}-AG-groupoids.

Anti-commutative AG-groupoids and T^{1}-AG-groupoids are two different subclasses of -AG-groupoids as shown in the following examples.

Example 1. Let $S=\{1,2,3,4\}$. Then
(i) (S, \cdot) is an anti-commutative AG-groupoid of order 4 which is not a T^{1}-AGgroupoid.
(ii) (S, \star) is T^{1}-AG-groupoid of order 4 which is not an anti-commutative AGgroupoid.

\cdot	0	1	2	3
0	0	2	3	1
1	3	1	0	2
2	1	3	2	0
3	2	0	1	3

(i)

\star	1	2	3	4
1	1	1	1	1
2	1	1	1	1
3	1	1	3	3
4	1	1	3	3

(ii)

Now, in the following theorem we investigate relationship of an anti-commutative T^{1}-AG-groupoid with quasi-cancellative, unipotent, AG-3-band and T^{2}-AG-groupoid.
Theorem 1. Let S be an anti-commutative $T^{1}-A G$-groupoid, then the following hold;
(i) S is quasi-cancellative
(ii) S is unipotent
(iii) S is $A G$-3-band
(iv) S is T^{2}-AG-groupoid.

Proof. Let S be an anti-commutative T^{1}-AG-groupoid and $x, y \in S$.
(i) Let

$$
\begin{align*}
x^{2} & =x y \tag{1.1}\\
\Rightarrow x x & =x y \\
\Rightarrow x x & =y x \quad \text { by } T^{1} \\
\Rightarrow x^{2} & =y x \tag{1.2}\\
\Rightarrow x y & =y x \quad \text { by }(1.1) \&(1.2) \\
\Rightarrow x & =y \quad \text { by anti-commutativity }
\end{align*}
$$

Similarly let,

$$
\begin{align*}
y^{2} & =y x \tag{1.3}\\
\Rightarrow y y & =y x \\
\Rightarrow y y & =x y \quad \text { by } T^{1} \text { property } \\
\Rightarrow y^{2} & =x y \tag{1.4}\\
\Rightarrow y x & =x y \quad \text { by } 1.3 \& 1.4
\end{align*}
$$

Thus by anti-commutativity we have $x=y$. Hence S is left quasi-cancellative. Similarly, it is easy to prove that S is right quasi-cancellative and hence is quasi-cancellative.
(ii) Now we show that every anti-commutative T^{1}-AG-groupoid is unipotent. Let $a, b \in S$. Then by medial law, anti-commutativity and definition of T^{1}-AGgroupoid we have,

$$
\begin{aligned}
a^{2} b^{2} & =a a \cdot b b=a b \cdot a b \\
\Rightarrow b^{2} a^{2} & =a b \cdot a b=a a \cdot b b=a^{2} b^{2} \\
\text { Thus } a^{2} & =b^{2} .
\end{aligned}
$$

Hence $\forall a, b \in S, a^{2}=b^{2}$, thus S is unipotent.
(iii) Let S be an anti-commutative T^{1}-AG-groupoid and $a \in S$. Then

$$
\begin{align*}
(a a \cdot a) a & =a a \cdot a a \quad \text { by left invertive law } \tag{1.5}\\
a(a a \cdot a) & =a a \cdot a a \quad \text { by } T^{1} \tag{1.6}\\
(a a \cdot a) a & =a(a a \cdot a) \quad \text { by }(1.5) \&(1.6)
\end{align*}
$$

Thus by anti-commutativity we have $(a a) a=a, \forall a \in S$. Hence S is AG-3band.
(iv) Let S be an anti-commutative T^{1}-AG-groupoid and $a, b, c, d \in S$. Assume that $a b=c d$ we prove that $a c=b d$. Using the assumption, definition of T^{1}-AG-groupoid, medial law and anti-commutativity since,

$$
\begin{align*}
a c \cdot b d & =a b \cdot c d \\
& =c d \cdot a b=c a \cdot d b \quad \text { by assumption \& medial law } \tag{1.7}\\
\Rightarrow b d \cdot a c & =d b \cdot c a \quad \text { by } T^{1} \tag{1.8}\\
\Rightarrow b a \cdot d c & =d c \cdot b a \quad \text { by medial law } \\
\Rightarrow b a & =d c \quad \text { by anti-commutativity } \tag{1.9}\\
\Rightarrow b d \cdot a c & =d c \cdot b a \quad \text { by }(1.1) \& \text { medial law } \\
\Rightarrow a c \cdot b d & =b a \cdot d c \quad \text { by } T^{1} \\
\Rightarrow a c \cdot b d & =d c \cdot b a \quad \text { by (1.8) } \\
\Rightarrow a c \cdot b d & =d b \cdot c a \quad \text { by medial law } \tag{1.10}\\
b d \cdot a c & =a c \cdot b d \quad \text { by }(1.7) \&(1.9)
\end{align*}
$$

Equvalently, by anti-commutativity $a c=b d$. Hence S is T^{2}-AG-groupoid.
Therefore the theorem is proved.

2. Relation of distributive AG-groupoids with anti-commutative AG-groupoids

Here we establish some relationships of left and right distributive (LD and RD) AGgroupoids with anti-commutative AG-groupoids. In general, there is no direct relation between LD- and RD-AG-groupoids and the anti-commutative AG-groupoids, but the combination of anti-commutativity with any one of these properties leads to another subclass of AG-groupoid as given in the following theorem.

Theorem 2. For anti-commutative $A G$-groupoid S, the following are equivalent:
(i) S is a left distributive $A G$-groupoid
(ii) S is a right distributive $A G$-groupoid
(iii) S is a distributive $A G$-groupoid.

Proof. (1) $(i) \Rightarrow(i i)$. Let S be an anti-commutative left distributive AG-groupoid and $a, b, c \in S$. Now, by medial and left invertive laws, left distributive property and anti-commutativity we have,

$$
\begin{aligned}
(a b \cdot c)(a c \cdot b c) & =(a b \cdot c)(a b \cdot c c)=(a b \cdot a b)(c \cdot c c) \\
& =(a b \cdot a b)(c c \cdot c c)=((c c \cdot c c) a b)(a b) \\
& =((a b \cdot c c) c c)(a b)=(((a b \cdot c)(a b \cdot c)) c c)(a b) \\
& =((a b \cdot c) c(a b \cdot c) c)(a b)=((a b \cdot c)(c c))(a b) \\
& =(a b \cdot c c)(a b \cdot c)=(a b \cdot c c)(a b \cdot c)=(a c \cdot b c)(a b \cdot c)
\end{aligned}
$$

Thus by anti-commutativity we have $(a b \cdot c)=(a c \cdot b c)$.
(2) $(i i) \Rightarrow(i)$. Let S be an anti-commutative right distributive AG-groupoid and $a, b, c \in S$. Using medial law, right distributive property, left invertive law and
anti-commutativity we get,

$$
\begin{aligned}
(a b \cdot a c)(a \cdot b c) & =(a a \cdot b c)(a \cdot b c)=(a a \cdot a)(b c \cdot b c)=(a a \cdot a a)(b c \cdot b c) \\
& =((b c \cdot b c) a a) a a=((a a \cdot b c) b c) a a \\
& =((a a \cdot b c) a)(b c \cdot a)=((a a \cdot b c)(b c)) a \\
& =(a \cdot b c)(a a \cdot b c)=(a \cdot b c)(a b \cdot a c) \\
& =(a b \cdot a c)(a \cdot b c)=(a \cdot b c)(a b \cdot a c) \\
\text { Thus } a \cdot b c & =a b \cdot a c .
\end{aligned}
$$

(3) $($ ii) \Rightarrow (iii) By (ii) and (2).
(4) $($ iii $) \Rightarrow(i)$. Obvious.

Hence the theorem is proved.

Although, anti-commutative AG-groupoid and left distributive AG-groupoids are not T^{3}-AG-groupoids, however here we establish a relation among the three classes. This relationship is given in the following theorem.

Theorem 3. Let S be an anti-commutative left distributive AG-groupoid. Then any of the following hold:
(i) S is T^{3}-AG-groupoid
(ii) S is quasi-cancellative $A G$-groupoid
(iii) S is AG-3-band.

Proof. (i) Let S be an anti-commutative left distributive AG-groupoid and $a, b, c \in$ S. We have to prove that S is right- T^{3}-AG-groupoid for this let $a b=a c$. Now using the medial and left invertive laws and the assumption we have,

$$
\begin{aligned}
b a \cdot c a & =(b c \cdot a a)=(b c \cdot a)(b c \cdot a)=(b c \cdot b c)(a a) \\
& =(a a \cdot b c)(b c)=((a a \cdot b)(a a \cdot c))(b c) \\
& =((a a \cdot a a) b c)(b c)=((a a \cdot a a) b c)(b c) \\
& =((a \cdot a a) b c)(b c)=((a b)(a a \cdot c))(b c) \\
& =((a c)(a a \cdot c))(b c)=((a c)(a a \cdot c))(b c) \\
& =((a \cdot a a)(c c))(b c)=((a a \cdot a a)(c c))(b c) \\
& =((c c \cdot a a)(a a))(b c)=((c a \cdot c a)(a a))(b c) \\
& =((c a \cdot a)(c a \cdot a)) b c=(c a \cdot a a)(b c) \\
& =(b c \cdot a a)(c a)=(b a \cdot c a)(c a)=(b a \cdot c a)(c a) \\
& =(c a \cdot c a)(b a)=(c a \cdot b)(c a \cdot a)=c a \cdot b a
\end{aligned}
$$

Thus by anti-commutativity $b a=c a$.
(ii) Now, we have to prove that S is left- T^{3}-AG-groupoid, for this let $b a=c a$. Using the assumption, medial law and left invertive law we get,

$$
\begin{aligned}
a b \cdot a c & =a a \cdot b c=(a a \cdot b)(a a \cdot c)=(a a \cdot a a) b c \\
& =(b c \cdot a a) a a=(b a \cdot c a) a a=((b a \cdot c)(b a \cdot a)) a a \\
& =((b a \cdot c)(c a \cdot a)) a a=((c a \cdot b)(c a \cdot a)) a a \\
& =(c a \cdot b a) a a=(c a \cdot a)(b a \cdot a) \\
& =(a a \cdot c)(a a \cdot b)=a a \cdot c b=a c \cdot a b
\end{aligned}
$$

Thus $a b=a c$. Hence S is T^{3}-AG-groupoid.
(iii) Let S be an anti-commutative left distributive AG-groupoid and $x, y \in S$. Let $x^{2}=x y$ and using the assumption, left invertive law and medial law we get,

$$
\begin{aligned}
x y \cdot y x & =x x \cdot y x=(x x \cdot y)(x x \cdot x)=(x y \cdot y)(x x \cdot x) \\
& =(x y \cdot y)(x x \cdot x)=(y y \cdot x)(x x \cdot x) \\
& =(y y \cdot x x) x x=(y x \cdot y x) x x \\
& =(y x \cdot x)(y x \cdot x)=y x \cdot x x=y x \cdot x y
\end{aligned}
$$

Thus $x y=y x \quad$ by anti-commutativityand equivalently $x=y$.
Similarly, let $y^{2}=y x$ and using the assumption, left invertive and medial laws and anti-commutativity we get,

$$
\begin{aligned}
x y \cdot y x & =x y \cdot y y=(x y \cdot y)(x y \cdot y)=(x y \cdot y)(y y \cdot x) \\
& =(x y \cdot y)(y x \cdot x)=(x y \cdot y x) y x \\
& =(y x \cdot y x) x y=(y x \cdot x)(y x \cdot y)=y x \cdot x y
\end{aligned}
$$

i.e. $x y=y x$ by anti-commutativity

Thus by anti-commutativity we conclude that $x=y$.
Next we prove that S is right quasi-cancellative. To do this let $x^{2}=y x$ and using the assumption, left distributive property, medial and left invertive laws and anti commutativity we get,

$$
\begin{aligned}
(x y)(y x) & =x y \cdot x x=(x y \cdot x)(x y \cdot x)=(x y \cdot x y) x x \\
& =((x x)(x y)) x y=(x x \cdot x y) x y=((x x \cdot x)(x x \cdot y)) x y \\
& =(x y(x x \cdot y))(x x \cdot x)=(x y(y x \cdot x))(x x \cdot x) \\
& =((x \cdot y x)(y x))(x x \cdot x)=((x x \cdot x) x)(y x \cdot y x) \\
& =((x x)(x x))((y x)(y x))=(x x \cdot y x)(y x \cdot y x) \\
& =((y x \cdot y x) y x) x x=((y x \cdot y)(y x \cdot x)) x x \\
& =(y x \cdot y x) x x=(y y \cdot x x) x x=(x x \cdot x x) y y \\
& =(x x \cdot y x) y y=(x y \cdot x x) y y=((y y)(x x)) x y \\
& =(y x \cdot y x) x y=(y x \cdot x)(y x \cdot y)=(y x)(x y)
\end{aligned}
$$

Thus $x y=y x \quad$ by anti-commutativityand equivalently $x=y$. Similarly, let $y^{2}=x y$ and using the assumption, medial and left invertive laws and anticommutativity we get,

$$
\begin{aligned}
x y \cdot y x & =(x y \cdot y)(x y \cdot x)=(x y \cdot x y) y x=(y y \cdot x y) y x \\
& =((y y \cdot x)(y y \cdot y)) y x=((x y \cdot y)(y y \cdot y)) y x \\
& =((x y \cdot y)(x y \cdot y)) y x=((y y \cdot y)(x y \cdot y)) y x \\
& =((y y \cdot x y) y y) y x=((y x \cdot y y) y y) y x \\
& =((y y \cdot y y) y x) y x=((y y \cdot y)(y y \cdot x)) y x \\
& =(y y \cdot y x) y x=(y x \cdot y x) y y=(y x \cdot y)(y x \cdot y)=y x \cdot y y \\
x y \cdot y x & =y x \cdot x y \quad \text { by assumption of } y^{2}=x y
\end{aligned}
$$

Thus $x y=y x$ by anti-commutativityand equivalently $x=y$. Hence S is quasi-cancellative.
(iv) Let S be an anti-commutative left distributive AG-groupoid and $a \in S$ then using the left invertive law, left distributivity, the medial law and anti-commutativity we get,

$$
\begin{aligned}
(a a \cdot a) a & =a a \cdot a a=(a a \cdot a)(a a \cdot a)=(a a \cdot a a) a a \\
& =(a \cdot a a) a a=a(a a \cdot a) \\
\text { i.e. }(a a \cdot a) a & =a(a a \cdot a)
\end{aligned}
$$

Thus by anti-commutativity $(a a \cdot a)=a$. Hence S is AG- 3 -band.

The following corollaries are now obvious using Theorem 2 .
Corollary 1. Anti-commutative right distributive AG-groupoid is T^{3}-AG-groupoid.
Corollary 2. Anti-commutative right distributive AG-groupoid is quasi-cancellative.
Corollary 3. Anti-commutative right distributive AG-groupoid is AG-3-band.

3. Relation among anti-commutative, Jordan and paramedial AG-groupoids

In this section, we give the relationship among anti-commutative, Jordan and paramedial AG-groupoids is discussed. In fact there is no direct relation among the anticommutative AG-groupoids, Jordan AG-groupoids and paramedial AG-groupoids. However, on combining these properties in an AG-groupoid give rise to another subclass of AG-groupoids. Here we give an important result among these three subclasses that will leads us to an important result directly in the form of a corollary.
Consider the following examples which show that anti-commutative AG-groupoid is not paramedial. Similarly, Jordan AG-groupoid is also not a paramedial AGgroupoid.

Example 2. Let $S=\{1,2,3,4\}$. Then
(i) (S, \cdot) is an anti-commutative AG-groupoid that is not a paramedial AGgroupoid.
(ii) (S, \star) is Jordan AG-groupoid that is not a paramedial AG-groupoid.
(iii) (S, \circ) is Jordan AG-groupoid which is not AG-3-band.

\cdot	1	2	3	4
1	2	3	1	4
2	4	1	3	2
3	3	2	4	1
4	1	4	2	3

(i)

\star	1	2	3	4
1	1	1	1	1
2	1	1	1	3
3	1	4	1	1
4	1	1	2	1

(ii)

\circ	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	2	1
4	4	3	1	2

(iii)

Theorem 4. For an anti-commutative Jordan AG-groupoid S, the following hold:
(i) S is paramedial $A G$-groupoid
(ii) S is T^{1}-AG-groupoid
(iii) S is $A G$-3-band.

Proof. Let S be an anti-commutative Jordan AG-groupoid and $a, b, c, d \in S$.
(i) Now using the medial and left invertive laws, Jordan identity and anti-commutativity we get,

$$
\begin{aligned}
(a b \cdot c d)(d b \cdot c a) & =(a b \cdot d b)(c d \cdot c a)=(a d \cdot b b)(c c \cdot d a) \\
& =((b b \cdot d) a)(c c \cdot d a)=((d b \cdot b) a)(c c \cdot d a) \\
& =((d b \cdot b) a)(d(c c \cdot a))=(a b \cdot d b)(d(c c \cdot a)) \\
& =(a b \cdot d)(d b(c c \cdot a))=(a b \cdot d)(d b(c c \cdot a)) \\
& =(d b \cdot a)(c c(d b \cdot a))=(d b \cdot a)(c c(a b \cdot d)) \\
& =((c c(a b \cdot d)) a) d b=((a b(c c \cdot d)) a) d b \\
& =((a(c c \cdot d)) a b) d b=((c c \cdot a d) a b) d b \\
& =((c a \cdot c d) a b) d b=((a b \cdot c d) c a) d b=(d b \cdot c a)(a b \cdot c d)
\end{aligned}
$$

Thus by anti-commutativity, $(a b \cdot c d)=(d b \cdot c a)$.
(ii) Let S be an anti-commutative Jordan AG-groupoid and $a, b, c, d \in S$. Let $a b=c d$ and consider,

$$
b a \cdot d c=c a \cdot d b=c d \cdot a b=a b \cdot c d=a b \cdot c d=d c \cdot b a
$$

Thus by anti-commutativity it follows that $b a=d c$.
(iii) Let S be an anti-commutative Jordan AG-groupoid and $a \in S$ then,

$$
(a a \cdot a) a=a a \cdot a a=a(a a \cdot a)
$$

Thus $a a \cdot a=a$ by anti-commutativity.
Hence the theorem is proved.
3.1. Relation of anti-commutative AG-groupoid with rectangular and paramedial AG-groupoids. In this subsection we define a new subclass of AGgroupoids which will be called rectangular AG-groupoid and will find its relation with anti-commutative and paramedial AG-groupoids.

Definition 1. An AG-groupoid S is called a rectangular $A G$-groupoid in which the identity $a b \cdot a c=d b \cdot d c$ holds for all $a, b, c, d \in S$.

The identity given in the above definition of rectangular AG-groupoid is present in the book "Latin squares and their applications" on page no.60 [4].

Example 3. Rectangular AG-groupoid of order 4.

\cdot	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	4	3	1	2
4	3	4	2	1

Theorem 5. For an anti-commutative paramedial $A G$-groupoid S, the following hold.
(i) S is rectangular $A G$-groupoid
(ii) S is unipotent
(iii) S is $A G^{* *}$-groupoid
(iv) S is $T^{1}-A G$-groupoid.

Proof. (i) Let S be anti-commutative paramedial AG-groupoid and $a, b, c, d \in S$. Then by the medial and paramedial laws and anti-commutativity we get,

$$
\begin{aligned}
(a b \cdot a d)(c b \cdot c d) & =(a a \cdot b d)(c c \cdot b d)=(a a \cdot c c)(b d \cdot b d) \\
& =(c a \cdot c a)(b d \cdot b d)=(c c \cdot a a)(b d \cdot b d) \\
& =(c c \cdot b d)(a a \cdot b d)=(c b \cdot c d)(a b \cdot a d)
\end{aligned}
$$

Thus by anti-commutativity $a b \cdot a d=c b \cdot c d$. Hence S is rectangular.
(ii) Let S be an anti-commutative paramedial AG-groupoid and $a, b \in S$ then,

$$
\begin{aligned}
a^{2} b^{2} & =a a \cdot b b=b a \cdot b a=b b \cdot a a=b^{2} a^{2} \\
\text { i.e. } a^{2} & =b^{2} \text { by anti-commutativity }
\end{aligned}
$$

Thus by anti-commutativity $a^{2}=b^{2}$. Hence S is unipotent.
(iii) Let S be an anti-commutative paramedial AG-groupoid and $a, b, c \in S$. Then by the paramedial law, medial law, left invertive law and anti-commutativity we have,

$$
\begin{aligned}
(a \cdot b c)(b \cdot a c) & =(a c \cdot b c) b a=(a c \cdot b)(b c \cdot a)=(b c \cdot a)(a c \cdot b) \\
& =(b c \cdot a c) a b=(b \cdot a c)(a \cdot b c)
\end{aligned}
$$

Thus by anti-commutativity it follows that $a \cdot b c=b \cdot a c$. Hence S is AG**groupoid.
(iv) Let S be an anti-commutative Jordan AG-groupoid and $a, b, c, d \in S$. Assume $a b=c d$, now using the paramedial property, medial law, assumption and anticommutativity we get,

$$
(b a)(d c)=(c a)(d b)=(c d)(a b)=(a b)(c d)=(d b)(c a)=(d c)(b a)
$$

This implies that $(b a)(d c)=(d c)(b a)$ and thus by anti-commutativity $b a=d c$. Hence S is T^{1}-AG-groupoid.

Using the above theorem with Theorem 4 and 5 one can easily prove the following:

Corollary 4. Every anti-commutative paramedial AG-groupoid is quasi-cancellative.
Corollary 5. Every anti-commutative Jordan AG-groupoid is quasi-cancellative.
The following examples show that anti-commutative or paramedial AG-groupoids are not necessarily $\mathrm{AG}^{* *}$-groupoids.

Example 4. Let $S=\{1,2,3,4\}$ and $T=\{a, b, c, d\}$. Then
(i) ($S, \cdot \cdot$) is an anti-commutative AG-groupoid which is not $\mathrm{AG}^{* *}$-groupoid.
(ii) (T, \cdot) is a paramedial AG-groupoid which is not $\mathrm{AG}^{* *}$-groupoid.

\cdot	1	2	3	4
1	1	3	4	2
2	4	2	1	3
3	2	4	3	1
4	3	1	2	4

(i)

\cdot	a	b	c	d
a	a	b	b	b
b	b	a	a	a
c	b	a	a	a
d	c	a	a	a

(ii)

Corollary 6. Every anti-commutative Jordan AG-groupoid is $A G^{* *}$-groupoid.

Corollary 7. Every anti-commutative Jordan AG-groupoid is unipotent.
3.2. Relation between anti-commutative and $\mathrm{AG}^{* *}$-groupoid. This subsection contains some relations between anti-commutative AG-groupoids and AG**groupoids with various other subclasses of AG-groupoids. Although, there is no relation between anti-commutative AG-groupoid and AG**-groupoid but these subclasses give various other AG-groupoids as in the following theorem:

Example 5. we give the following as counter examples.
(i) Anti-commutative AG-groupoid which is not unipotent.
(ii) $A G^{* *}$-groupoids which is not unipotent.

\cdot	1	2	3	4
1	2	3	1	4
2	4	1	3	2
3	3	2	4	1
4	1	4	2	3

(i)

\cdot	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	2	1
4	4	3	1	2

(ii)

Theorem 6. For an anti-commutative $A G^{* *}$-groupoid S, the following hold:
(i) S is T^{3}-AG-groupoid
(ii) S is right-Bol-AG-groupoid
(iii) S is unipotent.

Proof. Let S be an anti-commutative AG**-groupoid and $a, b, c, d \in S$.
(i) To prove that S is T^{3}-AG-groupoid. Assume that $a b=a c$ for T_{r}^{3}. Using medial law, AG** property, left invertive law the paramedial law, the anticommutativity and the assumption we get,

$$
\begin{aligned}
b a \cdot c a & =b c \cdot a a=a(b c \cdot a)=a(a c \cdot b) \\
& =a c \cdot a b=a a \cdot c b=a c \cdot a b=a b \cdot a c \\
& =a a \cdot b c=c a \cdot b a .
\end{aligned}
$$

This gives further by the anti-commutativity of S we get, $b a \cdot c a=c a$. $b a$ and thus $b a=c a$. Hence S is T_{r}^{3} AG-groupoid.
Let us assume that $b a=c a$ for T_{r}^{3}. Now using the medial law, $\mathrm{AG}^{* *}$ property and left invertive law we get,

$$
a b \cdot a c=a a \cdot b c=b(a a \cdot c)=b(c a \cdot a) .
$$

Again using the AG** property, assumption, medial law, paramedial law and anti-commutativity we get,

$$
\begin{aligned}
a b \cdot a c & =b(c a \cdot a)=c a \cdot b a=b a \cdot c a \\
& =b c \cdot a a=a c \cdot a b
\end{aligned}
$$

Thus $a b \cdot a c=a c \cdot a b$ and hence by anti-commutativity we conclude that $a b=a c$.
(ii) Assume that S is an anti-commutative $\mathrm{AG}^{* *}$-groupoid and $a, b, c \in S$. Now, by $\mathrm{AG}^{* *}$ property, left invertive law and anti-commutativity we get,

$$
\begin{aligned}
(a(b c \cdot b))((a b \cdot c) b) & =(b c \cdot a b)((a b \cdot c) b)=(b c \cdot a b)(b c \cdot a b) \\
& =((a b \cdot c) b)(b c \cdot a b)=((a b \cdot c) b)(a(b c \cdot b))
\end{aligned}
$$

Thus by anti-commutativity we conclude that $a(b c \cdot b)=(a b \cdot c) b$.
(iii) Let a, b be elements of an anti-commutative AG-groupoid S. Now, using the definition of $\mathrm{AG}^{* *}$, left invertive law and anti-commutativity we get,

$$
\begin{aligned}
a^{2} \cdot b^{2} & =(a a)(b b)=b(a a \cdot b)=b(b a \cdot a) \\
& =(b a)(b a)=(b b)(a a)=b^{2} \cdot a^{2}
\end{aligned}
$$

Thus by anti-commutativity it follows that $a^{2}=b^{2} \forall a, b \in S$. Hence S is unipotent.

4. Conclusion

In this article, various relations of anti-commutative AG-groupoids with other subclasses of AG-groupoids are investigated. A new subclass of AG-groupoids named as rectangular AG-groupoid is introduced and investigated. Various examples and counter examples are provided with latest computational techniques of GAP, Mace4 and Prover9. The researchers are motivated to find other relations of these subclasses with other known subclasses and to investigate other properties of these AG-groupoids.

5. Acknowledgments

The authors are very thankful to the editor and referees for their helpful suggestions which improved the presentation of the paper.

References

[1] I. Ahmad, M. Rashad and M. Shah, Some new results on T^{1}, T^{2} and $T^{4}-A G$-groupoids, Journal of Recent Sciences 2, (2013) 64-66.
[2] Amanullah, M. Rashad and I. Ahmad, Abel Grassmann's groupoids of modulo matrices, Mehran University Research Journal of Engineering \& Technology 35, No. 1 (2016) 63-70.
[3] Amanullah, M. Rashad, I. Ahmad and M. Shah, On Modulo AG-groupoids, Journal of Advances in Mathematics 8, No. 3 (2014) 1606-1613.
[4] J. Denes and A. D. Kedwell, Latin square and their applications, Acadmic Press New York and London, 1974.
[5] J. Jezek and T. Kepka, Medial groupoids, Acadmia Nakaladatelstvi Ceskoslovenske AkademieVed, 1983.
[6] M. Khan and Q. Mushtaq, Ideals in the left almost semigroups, In Proceedings of 4th International Pure Mathematics Conference, (2003) 65-77.
[7] Q. Mushtaq and M. Khan, On left almost ring, In Proceedings of 7th International Pure Mathematics Conference, 2006.
[8] M. Shah, A theoretical and computational investigations of $A G$-groups, PhD thesis, Quaid-i-Azam University Islamabad, Pakistan 2012.
[9] M. Shah, I. Ahmad and A. Ali, Discovery of new classes of AG-groupoids, Research Journal of Recent Sciences, 1, (2012) 47-49.
[10] M. Shah, I. Ahmad and A. Ali, On quasi-cancellativity of AG-groupoids, International Journal Contemp. Mathematical Sciences, 7, (2012) 2065-2070.

